Use of Drones for Warehouse Management: A Bibliometric Analysis and Literature Review

Authors

  • Danna Juliette Diaz Portilla Universidad Pontificia Bolivariana Seccional Bucaramanga, Colombia
  • Dariana Victoria Márquez Gutiérrez Universidad Pontificia Bolivariana Seccional Bucaramanga, Colombia
  • Daniela Rey Rueda Universidad Pontificia Bolivariana Seccional Bucaramanga, Colombia
  • Lesly Juliana Sanabria Álvarez Universidad Pontificia Bolivariana Seccional Bucaramanga, Colombia
  • Jairo Núñez Rodríguez Universidad Pontificia Bolivariana Seccional Bucaramanga, Colombia

Keywords:

Storage, drones, technology, route planning, logistics

Abstract

scientific literature. The research is based on the recognition that storage centers are no longer passive spaces but have become smart distribution centers, where efficiency, time reduction, and inventory optimization are essential. In this scenario, drones emerge as an innovative tool capable of automating repetitive tasks, reducing human error, and mitigating risks associated with working at heights or in complex environments. The methodology was based on consulting high-impact databases such as Scopus and Web of Science, applying inclusion and exclusion criteria to select 84 relevant articles. The bibliometric analysis identified publication trends, prominent authors, leading countries in research, and the main issues associated with the implementation of drones. The results indicate that the most frequent challenges are related to technological infrastructure, route planning, inventory management, and logistics. It is concluded that drones are a promising technology for automating tasks and improving traceability in warehouses; however, their effective adoption requires closing technical and regulatory gaps and developing viable business models that demonstrate operational returns. 

 

References

N. Macoir et al., “UWB Localization with Battery-Powered Wireless Backbone for Drone-Based Inventory Management,” Sensors 2019, Vol. 19, Page 467, vol. 19, no. 3, p. 467, Jan. 2019, doi: 10.3390/S19030467.

F. Benes, P. Stasa, J. Svub, G. Alfian, Y. S. Kang, and J. T. Rhee, “Investigation of UHF Signal Strength Propagation at Warehouse Management Applications Based on Drones and RFID Technology Utilization,” Applied Sciences 2022, Vol. 12, Page 1277, vol. 12, no. 3, p. 1277, Jan. 2022, doi: 10.3390/APP12031277.

Maria Jose Escudero Serrano, “Logística de Almacenamiento 2 - A Edición - ESCUDERO SERRANO, MARÍA JOSÉ - 1, 2, 2019 - Editorial Paraninfo - 8428340773 - Anna’s Archive-10-39 | PDF.” Accessed: Sep. 09, 2025. [Online]. Available: https://es.scribd.com/document/794801923/Logi-stica-de-almacenamiento-2-a-edicio-n-ESCUDERO-SERRANO-MARI-A-JOSE-1-2-2019-Editorial-Paraninfo-8428340773-b561ea6e12ef0a6?7OJTdPLitu9=29qwvaVhDV

Ivan Thompson, “DEFINICIÓN DE LOGÍSTICA - Promonegocios.net.” Accessed: Sep. 09, 2025. [Online]. Available: https://www.promonegocios.net/distribucion/definicion-logistica.html

T. M. Fernández-Caramés, O. Blanco-Novoa, I. Froiz-Míguez, and P. Fraga-Lamas, “Towards an Autonomous Industry 4.0 Warehouse: A UAV and Blockchain-Based System for Inventory and Traceability Applications in Big Data-Driven Supply Chain Management,” Sensors 2019, Vol. 19, Page 2394, vol. 19, no. 10, p. 2394, May 2019, doi: 10.3390/S19102394.

D. Zhai, C. Wang, H. Cao, S. Garg, M. M. Hassan, and S. A. AlQahtani, “Deep neural network based UAV deployment and dynamic power control for 6G-Envisioned intelligent warehouse logistics system,” Future Generation Computer Systems, vol. 137, pp. 164–172, Dec. 2022, doi: 10.1016/J.FUTURE.2022.07.011.

W. Yesid, G. Alarcón, K. Nathalia, and T. Ortiz, “Estado del arte de la implementación del dron en las actividades logísticas,” Apr. 2020, Accessed: Sep. 09, 2025. [Online]. Available: http://repository.unad.edu.co/handle/10596/33489

L. Xu, V. R. Kamat, and C. C. Menassa, “Automatic extraction of 1D barcodes from video scans for drone-assisted inventory management in warehousing applications,” International Journal of Logistics Research and Applications, vol. 21, no. 3, pp. 243–258, May 2018, doi: 10.1080/13675567.2017.1393505.

A. De Falco, F. Narducci, and A. Petrosino, “An UAV autonomous warehouse inventorying by deep learning,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11751 LNCS, pp. 443–453, 2019, doi: 10.1007/978-3-030-30642-7_40.

A. Rhiat, L. Chalal, and A. Saadane, “A Smart Warehouse Using Robots and Drone to Optimize Inventory Management,” Lecture Notes in Networks and Systems, vol. 358 LNNS, pp. 475–483, 2022, doi: 10.1007/978-3-030-89906-6_32.

H. Fang, F. Fang, Q. Hu, and Y. Wan, “Supply Chain Management: A Review and Bibliometric Analysis,” Processes 2022, Vol. 10, Page 1681, vol. 10, no. 9, p. 1681, Aug. 2022, doi: 10.3390/PR10091681.

T. Kosztyán et al., “A Path Planning Model for Stock Inventory Using a Drone,” Mathematics 2022, Vol. 10, Page 2899, vol. 10, no. 16, p. 2899, Aug. 2022, doi: 10.3390/MATH10162899.

D. Tranfield, D. Denyer, and P. Smart, “Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review,” British Journal of Management 2003, vol. 14, no. 3, pp. 207–222, Sep. 2003, doi: 10.1111/1467-8551.00375.

H. Munthe-Kaas, H. Nøkleby, S. Lewin, and C. Glenton, “The TRANSFER Approach for Assessing the Transferability of Systematic Review Findings,” BMC Medical Research Methodology 2020, vol. 20, no. 1, p. 11, Jan. 2020, doi: 10.1186/s12874-019-0834-5–222, Sep. 2003, doi: 10.1111/1467-8551.00375.

Published

2025-12-09